Chaotic dynamics and fractals

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chaotic Dynamics, Fractals, and Billiards

Chaotic dynamics occur in deterministic systems which display extreme sensitivity on initial conditions. These systems often have attractors which are geometric figures exhibiting affine self-similarity that have non-integer dimension, otherwise known as fractals. We investigated the link between chaos and the eventual fate of a ball on a frictionless elliptical billiards table with one pocket....

متن کامل

Chaotic Maps: Dynamics, Fractals, and Rapid Fluctuations

Pseudo-Riemannian geometry is, to a large extent, the study of the Levi-Civita connection, which is the unique torsion-free connection compatible with the metric structure. There are, however, other affine connections which arise in different contexts, such as conformal geometry, contact structures, Weyl structures, and almost Hermitian geometry. In this book, we reverse this point of view and ...

متن کامل

Self-similar fractals and arithmetic dynamics

‎The concept of self-similarity on subsets of algebraic varieties‎ ‎is defined by considering algebraic endomorphisms of the variety‎ ‎as `similarity' maps‎. ‎Self-similar fractals are subsets of algebraic varieties‎ ‎which can be written as a finite and disjoint union of‎ ‎`similar' copies‎. ‎Fractals provide a framework in which‎, ‎one can‎ ‎unite some results and conjectures in Diophantine g...

متن کامل

Chaotic dynamics and synchronization of fractional order PMSM ‎system

‎In this paper, we investigate the chaotic behaviors of the fractional-order permanent magnet synchronous motor (PMSM) system. The necessary condition for the existence of chaos in the fractional-order PMSM system is deduced and an active controller is developed based on the stability theory for fractional systems. The presented control scheme  is simple and flexible, and it is suitable both fo...

متن کامل

Interface dynamics and kinetic roughening in fractals.

We consider the dynamics and kinetic roughening of single-valued interfaces in two-dimensional fractal media. Assuming that the local height difference distribution function of the fronts obeys Levý statistics with a well-defined power-law decay exponent, we derive analytic expressions for the local scaling exponents. We also show that the kinetic roughening of the interfaces displays anomalous...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematical Modelling

سال: 1987

ISSN: 0307-904X

DOI: 10.1016/0307-904x(87)90011-4